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Is Active Gravitational Mass Equal to Inertial Mass? 
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It is possible, within the framework of general relativity, to define an active 
gravitational mass density of incoherent matter. It is not equal to the inertial 
mass density, except when at rest. The concept can be specialized to a single 
massive particle; again, its active gravitational mass is not equal to its 
inertial mass, except when it rests. A measurement of the impulse imparted 
to a test particle by a massive body passing nearby can establish the differ- 
ence, and it may be possible to carry out this measurement in a laboratory. 
As a by-product of our computations we obtain a generalization to nonradial 
motion of the slowing-down effect in a Schwarzschild field. 

The  coupl ing  cons tan t  K in equa t ion  (3) between the grav i ta t iona l  field and  
the e n e r g y - m o m e n t u m  densi ty  field in general  relat ivi ty is fixed by  means  o f  
a cor respondence  pr inciple  with Newton ' s  theory,  appl ied  to systems o f  
incoherent  ma t t e r  in the l imit  o f  weak fields and low velocities. In  par t icular ,  
one uses the  equal i ty  between the active gravi ta t ional  and  inert ial  masses.  
I t  tu rns  out  tha t  K is equal  to Newton ' s  gravi ta t ion  constant .  Once K has been 
fixed, one m a y  o f  course ask quest ions abou t  condi t ions  tha t  are far  removed  
f rom this limit.  A na tu ra l  quest ion in this connect ion,  which is the subject  o f  
this paper ,  is whether  this equal i ty  between the masses remains  true at  high 
velocities.  This  quest ion is connected  with the ma ss - c u r r e n t  effect predic ted  
by  genera l  relativity.  The  bes t -known aspect  of  this effect is in the Lense -  
Thi r r ing  (1918) t r ea tment  o f  a ro ta t ing  body.  Based on this t r ea tment  is a 
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measurable  (in principle) correct ion te rm in the famous  gyroscope precession 
equat ion (Schiff, 1967, 1960). Here  we bring for th  a different aspect  o f  the 
mass -cu r ren t  effect. But (a big " b u t " )  whether  it can really be discovered 
nowadays  in a l abora to ry  should be judged by  an interested experimentalist .  

Consider  a four-dimensional  differentiable manifo ld  equipped with a 
projective structure. In  every coordinate  system x ~ (i = 0, 1, 2, 3) one m a y  
describe mos t  o f  the paths  (we refer to them later as particles) by expressing 
their  " loca t ions"  x ~ (c~ = 1, 2, 3) as functions o f  the " t i m e "  x ~ Then  one m a y  
define the (observed) velocities by v ~' = (dx'~/dx ~ and the (observed) accelera- 
tions by a" = (d2x '~/dx  ~ (concepts which depend on the choice o f  co- 
ordinates,  but  retain, at least partially,  the expected physical meaning  in 
coordinates  provided with due physical  essence). We set c = 1. Let  V~ be 
(locally) any symmetr ic  affine connect ion such tha t  its set o f  geodesics 
coincides with the projective structure. (I'~k is determined up to a projective 
t ransformat ion . )  I t  is easy to show that  

a ~ = - F g o  + ( r ~  - 2F~o)V ~ + (2F~oSr ~ - F~y)vav r + F~ ~ (1) 

exactly. A~ -= - F ~ 0  is the acceleration field o f  particles at rest. 
We consider now a freely falling observer  in the f rame o f  general rela- 

tivity. Suppose that  to get a Newtonian  not ion of  the gravi tat ional  field in his 
vicinity, he measures  the gravi tat ional  accelerations A~ of  slow (relative to him) 
test particles in Fermi  coordinates.  We need even less, that  is 

g,j  = ~hj, r ~  --  j k  = 0 (2) 

a long (x ~ 0, 0, 0). 
Let  us assume Einstein's equations 

G ij = - 81rKT ~j (3) 

By equat ions (1)-(3) we can find (for test particles at  rest) at  the spatial origin 

A.,B -- Ae.~ = 0, A. , .  = - R o 0  = 8zr~(Too - �89 (4) 

This result can also be obtained f rom the geodesic deviation equation.  I f  the 
source of  the gravi tat ional  field is incoherent  matter ,  T ~j = t , U ( U  j, one finds 

A~, B - Ae, ~ = 0, A~,~ = -4zrKp(1 + v2)(1 - v2) -1 (5) 

where v is the velocity of  the incoherent  mat te r  at the spatial origin: U ~ = 
(1 - vZ)-l/2(1, v).  

Compar i son  of  (5) with Newton ' s  gravitat ional  field equations (even in a 
freely falling Euclidean nonrota t ing  f rame)  shows that  it is natural  to def ine  
the (relative) gravitat ional  active mass  density of  incoherent  mat te r  with 
respect to an observer  moving  with velocity v relative to the mat te r  to be 

PA = p(1 + V2)(1 -- V2) -1 (6) 
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Fig. 1. Incoherent matter in Fermi co- 
ordinates. World lines of the particles are 
drawn. Distances between particles are 
much larger than their Schwarzschild 
radii. 
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This quanti ty represents locally the source o f  the gravitational acceleration 
field o f  particles at rest. We find it surprising that  it is different f rom the 
(relative) inertial mass density [ =  energy density = T OO = p(1 - v2)-1]. Is 
this known ? Is it possible to check this experimentally ? 

Interpreting incoherent  matter  as a mathematical  limit to systems of  
numerous  particles 2 with no interaction other than gravitational, we obtain 
f rom (5) the following flux o f  A~ through  the boundary  S o f  a small three- 
volume V a round  the spatial origin (Fig. 1): 

s A . d S  x -4rrxVp(1 + v2)(1 - v2) -1 

The number  o f  particles in V(world lines intersecting V) is pmf f~V( l  - v2) -~/2, 

if  we assume that  they all have the same proper  mass mo; it is easy to generalize 
to  a mixture. Dividing the flux by -47rK times the number,  we find the active 
gravitat ional  mass o f  a particle o f  the incoherent matter ;  

mA = m0(1 + v2)(1 - v2) -1/2 (7) 

We now use a heuristic a rgument  to establish the general conditions 
under  which one can apply equations (5) [or even equations (4)] to finite 

2 Note t'hat for given volume V and total proper mass Mo, too~d-+ 0 as N--+ ~ ,  where 
N is the number of particles, Mo = Nmo and d is the average distance between close 
neighbors. Kmo/d ~ 0 for "physical" incoherent matter, and vanishes for the 
mathematical abstraction. 
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domains or even globally, not just along a line. We then propose a laboratory 
experiment with some predicted results. Then we shall establish these 
predictions rigorously and try to get a deeper understanding of equations (5). 

We think that equations (5) [or (4)] can be taken seriously globally when 
the following approximation is justified: (a) quasi stationarity, (b) linearity of 
equations in the gravitational field: weak field, (c) linearity of equations in 
mass: the gravitational energy is negligible with respect to kinetic energy 
(unbounded systems for which there is no "virial theorem"). 

Condition (a) is motivated by the fact that the solution A~ of equations (5) 
is determined by p at the instantaneous time rather than at the retarded time, 
as one should expect according to relativity theory. Conditions (b) and (c) are 
motivated by the linearity of equations (5) in A~ and in p. 

It seems that one of the most suitable physical systems satisfying these 
conditions is a beam of particles, in which the distances between the particles 
are large compared to their Schwarzschild radii and dimensions. The following 
results are based on the interpretation of incoherent matter illustrated in 
Figure 1. 

One can measure directly the gravitational force produced by a beam of 
known particles (acting on a test particle at rest) and compare it with the 
standard solution of equations (5). This prediction is different from that of 
Newton's theory and from that of the attractive assumption that the active 
gravitational mass is equal to the energy (=  the inertial mass). Moreover, the 
beam-velocity dependence of the force is different according to these three 
alternatives. Equivalently, one may measure the impulse transferred to a test 
particle at rest from a body passing nearby, but still at a distance large 
compared with its Schwarzschild radius. This impulse is proportional to the 
product of the active gravitational mass mA of the body and the time of 
interaction, and thus to m a y -  1. On the Newtonian theory (mA = m0) we have 
mov -1. If  we assume mA = ml = mo(1 - v2) -112, we have m0v-l(1 - v2) -1/2. 
According to our result, equation (7), we should have 

moV- 1(1 - v 2)- 1/2(1 + v 2) 

For low velocities these impulses are, respectively, proportional to 

mov -1, moV-l(1 + �89 mov-l(1 + 302) 

An experiment designed to discover relativistic effects should be able to 
distinguish between �89 2 and -~v 2. Also, the foregoing impulses are minimal at 
v 2 = ~ ,  �89 ~, respectively. 

The latter, general relativistic, result v 2 = �89 is also a critical value from 
another point of view: according to Carmeli (1972), there is a slowing-down 
effect for test particles projected radially in a Schwarzschild field which begins 
when the velocity (at infinity) is 1/~/3. We have not found an obvious c o n -  



Active Gravitational Mass 553 

Fig. 2. Test particle at P at distance l f r o m  
the line of  mot ion  x 1 of  the body:  
X ~ = O, X 1 = r c o s  O, 

x 2 = rs inOcosr  x* = rs inOsinr  

1 2 3  ~P(x,x, x ) 

m o v X 1 

nection between our  result (after t ransforming to the body ' s  rest f lame)  and 
Carmel i ' s ;  his result is restricted to radial  mot ion  and seems unsuitable for  a 
l abora tory  exper iment  (it m a y  be useful in an as t ronomical  test). Later  on 
we try to show tha t  the results are really independent  (Footno te  3). 

We remember  tha t  our  p roposed  experiment  was based on some heuristic 
considerations.  We shall now prove its predicted result [impulse propor t iona l  
to ma(v)v-1, ma given by equat ion (7)] for  a spherically symmetr ic  body.  The  
only approx imat ion  we shall make  is to consider only the r - 2  par t  o f  the 
field A,  since we assume the test particle to be at a distance f rom the body  
tha t  is large compared  to the Schwarzschild radius 2Kmo of  the body.  

The  Schwarzschild metric  in isotropic coordinates  is 

ds 2 (1 - ~mo/2r) 2 ( Kmo~ 4(,1y12 
= (1 T ~mo/2r) 2 dx~ - _1 + 2r ] "-'" + dx22 + dx32) 

where r - (x 12 + x 22 + xa2) 1/2. We apply a Lorentz  t rans format ion  

{ x  ~  = ( 1  - v ~ ) - l / 2 ( x ~  + v x l ) ,  x ~' = ( 1  - v ~ ) - ' 2 ( x ~  + v x ~  x 2' = x ~, x 3' = x 3} 

omit  the primes,  and calculate A,  = - Fgo at x ~ = 0, at which t ime the body  
is at the origin. Then  we obtain  (see Fig. 2) 

K m  o 
A1 = - r--- ~- [(1 - 3v~)(1 - v2)-~a(O) ctg 0 + O(~mo/r)] 

Km o 
A2 = - r---- if- [(1 + v2)e~( O) cos r + O(Kmo/r)] 

Km 0 
A3 = - r---- ~- [(1 + v2)a(O) sin r + O(Kmo/r)] 
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where a(0) - (1 - v2)-l[sin2 0 + (1 - v2) -1 cos 2 0] -a/2 sin 0. A, is the force 
on a unit mass test particle at rest at the point P in Figure 2. Note that A1 
changes sign at v ~ = ]-; this is the generalization (to lowest order in r -1 )  of  
Carmeli 's slowing-down effect (1972) to nonradial motion. From symmetry 
the impulse f~_ oo A ,  dx~ exerted on the test particle during the whole motion 
of  the source particle, is in the direction of  the normal to the x 1 axis, a and 
its value (neglecting the O ( r - a )  terms) is ~ 

f o I =  Kmo(1 + v 2) a ( O ) r - 2 v - l  dx  1 = 2K o + v 2) 1 

in accordance with our prediction. The Newtonian result is I = 2 ~ m o l -  ~v-1. 

In this sense, that of  the total impulse exerted on a test particle of  unit mass 
at rest, we may attribute to every spherical body (and not only to those that 
constitute incoherent matter) an active gravitational mass 

mA = too(1 + v2)(1 -- v2) -1/2 

as in equation (7). 
For  a stationary beam of particles along the x ~ axis one obtains by 

superposition [neglecting the O ( r - a )  term and the gravitational interaction 
between the particles in the beam, according to our assumptions] that A.  is 
directed normally toward the beam and that its value is 

2Knmo(1 + v2)(1 -- v2)-112l -1 

where l is the distance from the beam and n is the number of  particles (of rest 
mass too) per unit length of the beam. This is again in accordance with our 
predictions. A, is a conservative field and satisfies along the beam Gauss '  
theorem with the correct source. To some extent these remarks explain 
equations (5), since we may refer to incoherent matter as a superposition of  
nonintersecting beams and, according to Footnote 2, incoherent matter (in 
which Kmo/d ~ 0) particle feels just the "leading terms" of the A~ created 
by the other particles. 

We conclude with some further remarks. We attributed to every particle 
a new concept: the (relative) active gravitational mass 

m~ = mo(1 + v2)(1 -- v2) -1/2 

This is not an independent covariant quantity. The only covariant quantities 
describing a spinless particle are the scalar mo and the four-velocity U ~. But in 

3 It is clear now that Carmeli's result is independent of ours. With respect to the relative 
velocity, the first effect is "parallel" while the second is "normal." 

4 Substituting of dx ~ = dxl/v, x t = l ctg 0, r = //sin 0, in accordance with Figure 2, 
leads to an immediate integral. 
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analogy to m = m0(1 - v2) -1/2, ma expresses a definite physical property 
related to the particle's ability to create a gravitational field. The exact 
physical meaning was given (measure the impulse). We also dealt with the 
concept of active gravitational mass density, but we do not think that it is 
fruitful to speak of the active gravitational mass of big systems (apart from 
exceptional cases), since active gravitational mass, in contrast with energy, 
appears (even in Newtonian terms) only in expressions of the form ~ (mA/r) 
[rather than ~ mA]. Based on (4), it is natural, however, to generalize our 
definition (6) of active gravitational mass density to arbitrary systems, in the 
form PA = - - T o o  + �89 ~. With this terminology the strong energy condition 
(Hawking and Ellis, 1973) is equivalent to the claim that the active gravi- 
tational mass density is nonnegative. Finally this discussion places a question 
mark on the validity of the commonly accepted belief that the inertial, passive 
gravitational and active gravitational masses are all equal to each other and 
(up to e 2) to the energy. 
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